Pages

Sunday, 24 March 2013

Back and other hard keys: three stories

Android 2.0 introduces new behavior and support for handling hard keys such as BACK and MENU, including some special features to support the virtual hard keys that are appearing on recent devices such as Droid.

This article will give you three stories on these changes: from the most simple to the gory details. Pick the one you prefer.

Story 1: Making things easier for developers

If you were to survey the base applications in the Android platform, you would notice a fairly common pattern: add a little bit of magic to intercept the BACK key and do something different. To do this right, the magic needs to look something like this:

@Overridepublic boolean onKeyDown(int keyCode, KeyEvent event) { if (keyCode == KeyEvent.KEYCODE_BACK && event.getRepeatCount() == 0) { // do something on back. return true; } return super.onKeyDown(keyCode, event);}

How to intercept the BACK key in an Activity is also one of the common questions we see developers ask, so as of 2.0 we have a new little API to make this more simple and easier to discover and get right:

@Overridepublic void onBackPressed() {// do something on back.return;}

If this is all you care about doing, and you're not worried about supporting versions of the platform before 2.0, then you can stop here. Otherwise, read on.

Story 2: Embracing long press

One of the fairly late addition to the Android platform was the use of long press on hard keys to perform alternative actions. In 1.0 this was long press on HOME for the recent apps switcher and long press on CALL for the voice dialer. In 1.1 we introduced long press on SEARCH for voice search, and 1.5 introduced long press on MENU to force the soft keyboard to be displayed as a backwards compatibility feature for applications that were not yet IME-aware.

(As an aside: long press on MENU was only intended for backwards compatibility, and thus has some perhaps surprising behavior in how strongly the soft keyboard stays up when it is used. This is not intended to be a standard way to access the soft keyboards, and all apps written today should have a more standard and visible way to bring up the IME if they need it.)

Unfortunately the evolution of this feature resulted in a less than optimal implementation: all of the long press detection was implemented in the client-side framework's default key handling code, using timed messages. This resulted in a lot of duplication of code and some behavior problems; since the actual event dispatching code had no concept of long presses and all timing for them was done on the main thread of the application, the application could be slow enough to not update within the long press timeout.

In Android 2.0 this all changes, with a real KeyEvent API and callback functions for long presses. These greatly simplify long press handling for applications, and allow them to interact correctly with the framework. For example: you can override Activity.onKeyLongPress() to supply your own action for a long press on one of the hard keys, overriding the default action provided by the framework.

Perhaps most significant for developers is a corresponding change in the semantics of the BACK key. Previously the default key handling executed the action for this key when it was pressed, unlike the other hard keys. In 2.0 the BACK key is now execute on key up. However, for existing apps, the framework will continue to execute the action on key down for compatibility reasons. To enable the new behavior in your app you must set android:targetSdkVersion in your manifest to 5 or greater.

Here is an example of code an Activity subclass can use to implement special actions for a long press and short press of the CALL key:

@Overridepublic boolean onKeyLongPress(int keyCode, KeyEvent event) { if (keyCode == KeyEvent.KEYCODE_CALL) { // a long press of the call key. // do our work, returning true to consume it. by // returning true, the framework knows an action has // been performed on the long press, so will set the // canceled flag for the following up event. return true; } return super.onKeyLongPress(keyCode, event);}
@Overridepublic boolean onKeyUp(int keyCode, KeyEvent event) { if (keyCode == KeyEvent.KEYCODE_CALL && event.isTracking() && !event.isCanceled()) { // if the call key is being released, AND we are tracking // it from an initial key down, AND it is not canceled, // then handle it. return true; } return super.onKeyUp(keyCode, event);}

Note that the above code assumes we are implementing different behavior for a key that is normally processed by the framework. If you want to implement long presses for another key, you will also need to override onKeyDown to have the framework track it:

@Overridepublic boolean onKeyDown(int keyCode, KeyEvent event) { if (keyCode == KeyEvent.KEYCODE_0) { // this tells the framework to start tracking for // a long press and eventual key up. it will only // do so if this is the first down (not a repeat). event.startTracking(); return true; } return super.onKeyDown(keyCode, event);}

Story 3: Making a mess with virtual keys

Now we come to the story of our original motivation for all of these changes: support for virtual hard keys, as seen on the Droid and other upcoming devices. Instead of physical buttons, these devices have a touch sensor that extends outside of the visible screen, creating an area for the "hard" keys to live as touch sensitive areas. The low-level input system looks for touches on the screen in this area, and turns these into "virtual" hard key events as appropriate.

To applications these basically look like real hard keys, though the generated events will have a new FLAG_VIRTUAL_HARD_KEY bit set to identify them. Regardless of that flag, in nearly all cases an application can handle these "hard" key events in the same way it has always done for real hard keys.

However, these keys introduce some wrinkles in user interaction. Most important is that the keys exist on the same surface as the rest of the user interface, and they can be easily pressed with the same kind of touches. This can become an issue, for example, when the virtual keys are along the bottom of the screen: a common gesture is to swipe up the screen for scrolling, and it can be very easy to accidentally touch a virtual key at the bottom when doing this.

The solution for this in 2.0 is to introduce a concept of a "canceled" key event. We've already seen this in the previous story, where handling a long press would cancel the following up event. In a similar way, moving from a virtual key press on to the screen will cause the virtual key to be canceled when it goes up.

In fact the previous code already takes care of this — by checking isCanceled() on the key up, canceled virtual keys and long presses will be ignored. There are also individual flags for these two cases, but they should rarely be used by applications and always with the understanding that in the future there may be more reasons for a key event to be canceled.

For existing application, where BACK key compatibility is turned on to execute the action on down, there is still the problem of accidentally detecting a back press when intending to perform a swipe. Though there is no solution for this except to update an application to specify it targets SDK version 5 or later, fortunately the back key is generally positioned on a far side of the virtual key area, so the user is much less likely to accidentally hit it than some of the other keys.

Writing an application that works well on pre-2.0 as well as 2.0 and later versions of the platform is also fairly easy for most common cases. For example, here is code that allows you to handle the back key in an activity correctly on all versions of the platform:

@Overridepublic boolean onKeyDown(int keyCode, KeyEvent event) { if (android.os.Build.VERSION.SDK_INT < android.os.Build.VERSION_CODES.ECLAIR && keyCode == KeyEvent.KEYCODE_BACK && event.getRepeatCount() == 0) { // Take care of calling this method on earlier versions of // the platform where it doesn't exist. onBackPressed(); } return super.onKeyDown(keyCode, event);}@Overridepublic void onBackPressed() { // This will be called either automatically for you on 2.0 // or later, or by the code above on earlier versions of the // platform. return;}

For the hard core: correctly dispatching events

One final topic that is worth covering is how to correctly handle events in the raw dispatch functions such as onDispatchEvent() or onPreIme(). These require a little more care, since you can't rely on some of the help the framework provides when it calls the higher-level functions such as onKeyDown(). The code below shows how you can intercept the dispatching of the BACK key such that you correctly execute your action when it is release.

@Overridepublic boolean dispatchKeyEvent(KeyEvent event) { if (event.getKeyCode() == KeyEvent.KEYCODE_BACK) { if (event.getAction() == KeyEvent.ACTION_DOWN && event.getRepeatCount() == 0) { // Tell the framework to start tracking this event. getKeyDispatcherState().startTracking(event, this); return true; } else if (event.getAction() == KeyEvent.ACTION_UP) { getKeyDispatcherState().handleUpEvent(event); if (event.isTracking() && !event.isCanceled()) { // DO BACK ACTION HERE return true; } } return super.dispatchKeyEvent(event); } else { return super.dispatchKeyEvent(event); }}

The call to getKeyDispatcherState() returns an object that is used to track the current key state in your window. It is generally available on the View class, and an Activity can use any of its views to retrieve the object if needed.

Backward compatibility for Android applications

Android 1.5 introduced a number of new features that application developers can take advantage of, like virtual input devices and speech recognition. As a developer, you need to be aware of backward compatibility issues on older devices—do you want to allow your application to run on all devices, or just those running newer software? In some cases it will be useful to employ the newer APIs on devices that support them, while continuing to support older devices.

If the use of a new API is integral to the program—perhaps you need to record video—you should add a manifest entry to ensure your app won't be installed on older devices. For example, if you require APIs added in 1.5, you would specify 3 as the minimum SDK version:

  ...  ... 

If you want to add a useful but non-essential feature, such as popping up an on-screen keyboard even when a hardware keyboard is available, you can write your program in a way that allows it to use the newer features without failing on older devices.

Using reflection

Suppose there's a simple new call you want to use, like android.os.Debug.dumpHprofData(String filename). The android.os.Debug class has existed since the first SDK, but the method is new in 1.5. If you try to call it directly, your app will fail to run on older devices.

The simplest way to call the method is through reflection. This requires doing a one-time lookup and caching the result in a Method object. Using the method is a matter of calling Method.invoke and un-boxing the result. Consider the following:

public class Reflect { private static Method mDebug_dumpHprofData; static { initCompatibility(); }; private static void initCompatibility() { try { mDebug_dumpHprofData = Debug.class.getMethod( "dumpHprofData", new Class[] { String.class } ); /* success, this is a newer device */ } catch (NoSuchMethodException nsme) { /* failure, must be older device */ } } private static void dumpHprofData(String fileName) throws IOException { try { mDebug_dumpHprofData.invoke(null, fileName); } catch (InvocationTargetException ite) { /* unpack original exception when possible */ Throwable cause = ite.getCause(); if (cause instanceof IOException) { throw (IOException) cause; } else if (cause instanceof RuntimeException) { throw (RuntimeException) cause; } else if (cause instanceof Error) { throw (Error) cause; } else { /* unexpected checked exception; wrap and re-throw */ throw new RuntimeException(ite); } } catch (IllegalAccessException ie) { System.err.println("unexpected " + ie); } } public void fiddle() { if (mDebug_dumpHprofData != null) { /* feature is supported */ try { dumpHprofData("/sdcard/dump.hprof"); } catch (IOException ie) { System.err.println("dump failed!"); } } else { /* feature not supported, do something else */ System.out.println("dump not supported"); } }}

This uses a static initializer to call initCompatibility, which does the method lookup. If that succeeds, it uses a private method with the same semantics as the original (arguments, return value, checked exceptions) to do the call. The return value (if it had one) and exception are unpacked and returned in a way that mimics the original. The fiddle method demonstrates how the application logic would choose to call the new API or do something different based on the presence of the new method.

For each additional method you want to call, you would add an additional private Method field, field initializer, and call wrapper to the class.

This approach becomes a bit more complex when the method is declared in a previously undefined class. It's also much slower to call Method.invoke() than it is to call the method directly. These issues can be mitigated by using a wrapper class.

Using a wrapper class

The idea is to create a class that wraps all of the new APIs exposed by a new or existing class. Each method in the wrapper class just calls through to the corresponding real method and returns the same result.

If the target class and method exist, you get the same behavior you would get by calling the class directly, with a small amount of overhead from the additional method call. If the target class or method doesn't exist, the initialization of the wrapper class fails, and your application knows that it should avoid using the newer calls.

Suppose this new class were added:

public class NewClass { private static int mDiv = 1; private int mMult; public static void setGlobalDiv(int div) { mDiv = div; } public NewClass(int mult) { mMult = mult; } public int doStuff(int val) { return (val * mMult) / mDiv; }}

We would create a wrapper class for it:

class WrapNewClass { private NewClass mInstance; /* class initialization fails when this throws an exception */ static { try { Class.forName("NewClass"); } catch (Exception ex) { throw new RuntimeException(ex); } } /* calling here forces class initialization */ public static void checkAvailable() {} public static void setGlobalDiv(int div) { NewClass.setGlobalDiv(div); } public WrapNewClass(int mult) { mInstance = new NewClass(mult); } public int doStuff(int val) { return mInstance.doStuff(val); }}

This has one method for each constructor and method in the original, plus a static initializer that tests for the presence of the new class. If the new class isn't available, initialization of WrapNewClass fails, ensuring that the wrapper class can't be used inadvertently. The checkAvailable method is used as a simple way to force class initialization. We use it like this:

public class MyApp { private static boolean mNewClassAvailable; /* establish whether the "new" class is available to us */ static { try { WrapNewClass.checkAvailable(); mNewClassAvailable = true; } catch (Throwable t) { mNewClassAvailable = false; } } public void diddle() { if (mNewClassAvailable) { WrapNewClass.setGlobalDiv(4); WrapNewClass wnc = new WrapNewClass(40); System.out.println("newer API is available - " + wnc.doStuff(10)); } else { System.out.println("newer API not available"); } }}

If the call to checkAvailable succeeds, we know the new class is part of the system. If it fails, we know the class isn't there, and adjust our expectations accordingly. It should be noted that the call to checkAvailable will fail before it even starts if the bytecode verifier decides that it doesn't want to accept a class that has references to a nonexistent class. The way this code is structured, the end result is the same whether the exception comes from the verifier or from the call to Class.forName.

When wrapping an existing class that now has new methods, you only need to put the new methods in the wrapper class. Invoke the old methods directly. The static initializer in WrapNewClass would be augmented to do a one-time check with reflection.

Testing is key

You must test your application on every version of the Android framework that is expected to support it. By definition, the behavior of your application will be different on each. Remember the mantra: if you haven't tried it, it doesn't work.

You can test for backward compatibility by running your application in an emulator from an older SDK, but as of the 1.5 release there's a better way. The SDK allows you to specify "Android Virtual Devices" with different API levels. Once you create the AVDs, you can test your application with old and new versions of the system, perhaps running them side-by-side to see the differences. More information about emulator AVDs can be found in the SDK documentation and from emulator -help-virtual-device.


Learn about Android 1.5 and more at Google I/O. Members of the Android team will be there to give a series of in-depth technical sessions and to field your toughest questions.

Announcing the Android 1.0 SDK, release 1

About this time last year, my colleagues and I were preparing for the first of the "early look" SDK releases. I remember being a little freaked out—November 12 was starting to sound awfully close! But I think I can safely speak for the entire Android team when I say that we were all very excited about that upcoming release. In the year since, we've run and concluded the first Android Developer Challenge, given away $5,000,000, released more SDK builds, and worked with our partners to prepare the first device for users. It's been quite the whirlwind of a year.

In one of those strange cosmic symmetries, here we are a year later, and we're once again very excited about an upcoming release. I'm referring, of course, to the first Android-powered device that our colleagues at T-Mobile have just announced—the T-Mobile G1. We can't wait to see our hard work on store shelves and in the hands of users, but today we're almost as excited because we're announcing the brand-new Android 1.0 SDK, release 1.

Yes, that means we're officially at 1.0. Of course the SDK won't remain static—we'll keep improving the tools by adding features and fixing bugs. But now developers can rely on the APIs in the SDK, and can update their applications to run on Android 1.0-compatible devices. The Android Market beta will also launch with the T-Mobile G1, providing developers an easy and open way to distribute their applications on that and later devices. I've already seen a lot of applications that have me stoked, and I can't wait to see things really come together as developers cross that final mile to prepare their applications for Android 1.0.

So what's next for us? Well, we'll keep working on the SDK, as I said. But we're also working hard with our partners in the Open Handset Alliance on the open-source release, with the aim of making the code available in the fourth quarter. The second Android Developer Challenge is also on the horizon—watch this space for more details. We're also already working on the future of the Android platform, and on more devices. We've updated the Developer Roadmap, and we'll keep updating it as more information becomes available.

It has indeed been quite an exciting road to get to where we are today. The road stretches on ahead though, and we're not slowing down for a moment. I look forward to meeting and working with many of you developers out there—and trying out your apps on my phone!

Happy Coding!

Saturday, 23 March 2013

Android SDK Updates

Today we are releasing updates to multiple components of the Android SDK:

  • Android 2.0.1, revision 1
  • Android 1.6, revision 2
  • SDK Tools, revision 4

Android 2.0.1 is a minor update to Android 2.0. This update includes several bug fixes and behavior changes, such as application resource selection based on API level and changes to the value of some Bluetooth-related constants. For more detailed information, please see the Android 2.0.1 release notes.

To differentiate its behavior from Android 2.0, the API level of Android 2.0.1 is 6. All Android 2.0 devices will be updated to 2.0.1 before the end of the year, so developers will no longer need to support Android 2.0 at that time. Of course, developers of applications affected by the behavior changes should start compiling and testing their apps immediately.

We are also providing an update to the Android 1.6 SDK component. Revision 2 includes fixes to the compatibility mode for applications that don't support multiple screen sizes, as well as SDK fixes. Please see the Android 1.6, revision 2 release notes for the full list of changes.

Finally, we are also releasing an update to the SDK Tools, now in revision 4. This is a minor update with mostly bug fixes in the SDK Manager. A new version of the Eclipse plug-in that embeds those fixes is also available. For complete details, please see the SDK Tools, revision 4 and ADT 0.9.5 release notes.

One more thing: you can now follow us on twitter @AndroidDev.