Pages

Thursday, 14 March 2013

Android 4.0 Graphics and Animations

[This post is by Romain Guy and Chet Haase, Android engineers who have been known to collaborate on the subject of graphics, UIs, and animation. You can read more from them on their blogs at curious-creature.org and graphics-geek.blogspot.com. — Tim Bray]

Earlier this year, Android 3.0 launched with a new 2D rendering pipeline designed to support hardware acceleration on tablets. With this new pipeline, all drawing operations performed by the UI toolkit are carried out using the GPU.

You’ll be happy to hear that Android 4.0, Ice Cream Sandwich, brings an improved version of the hardware-accelerated 2D rendering pipeline to phones, starting with Galaxy Nexus.

Enabling hardware acceleration

In Android 4.0 (API level 14), hardware acceleration, for the first time, is on by default for all applications. For applications at lower API levels, you can turn it on by adding android:hardwareAccelerated="true" to the tag in your AndroidManifest.xml.

To learn more about the hardware accelerated 2D rendering pipeline visit the official Android developer guide. This guide explains how to control hardware acceleration at various levels, offers several performance tips and tricks and describes in details the new drawing model.

I also encourage you to watch the Android Hardware Accelerated Rendering talk that we gave at Google I/O 2011.

Introducing TextureView

Applications that need to display OpenGL or video content rely today on a special type of UI element called SurfaceView. This widget works by creating a new window placed behind your application’s window. It then punches a hole through your application’s window to reveal the new window. While this approach is very efficient, since the content of the new window can be refreshed without redrawing the application’s window, it suffers from several important limitations.

Because a SurfaceView’s content does not live in the application’s window, it cannot be transformed (moved, scaled, rotated) efficiently. This makes it difficult to use a SurfaceView inside a ListView or a ScrollView. SurfaceView also cannot interact properly with some features of the UI toolkit such as fading edges or View.setAlpha().

To solve these problems, Android 4.0 introduces a new widget called TextureView that relies on the hardware accelerated 2D rendering pipeline and SurfaceTexture. TextureView offers the same capabilities as SurfaceView but, unlike SurfaceView, behaves as a regular view. You can for instance use a TextureView to display an OpenGL scene or a video stream. The TextureView itself can be animated, scrolled, etc.

The following piece of code creates a TextureView to display the video preview from the default camera. The TextureView itself is rotated 45 degrees and semi-transparent.

public class TextureViewActivity extends Activity implements TextureView.SurfaceTextureListener { private Camera mCamera; private TextureView mTextureView; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); mTextureView = new TextureView(this); mTextureView.setSurfaceTextureListener(this); setContentView(mTextureView); } @Override public void onSurfaceTextureAvailable(SurfaceTexture surface, int width, int height) { mCamera = Camera.open(); Camera.Size previewSize = mCamera.getParameters().getPreviewSize(); mTextureView.setLayoutParams(new FrameLayout.LayoutParams( previewSize.width, previewSize.height, Gravity.CENTER)); try { mCamera.setPreviewTexture(surface); } catch (IOException t) { } mCamera.startPreview();  mTextureView.setAlpha(0.5f); mTextureView.setRotation(45.0f); } @Override public void onSurfaceTextureSizeChanged(SurfaceTexture surface, int width, int height) { // Ignored, the Camera does all the work for us } @Override public boolean onSurfaceTextureDestroyed(SurfaceTexture surface) { mCamera.stopPreview(); mCamera.release(); return true; } @Override public void onSurfaceTextureUpdated(SurfaceTexture surface) { // Called whenever a new frame is available and displayed in the TextureView }}

A TextureView can just as easily be used to embed an OpenGL scene in your application. As of Android 4.0, eglCreateWindowSurface() can be used to render into a SurfaceTexture object.

Animation

There were minor improvements in Android 4.0 to some of the new animation facilities that were added in the 3.x releases.

First, if you're new to the new android.animation package and classes added in 3.0 and 3.1, you might want to read Animation in Honeycomb and Introducing ViewPropertyAnimator. These articles discuss the new APIs added in 3.0 that make animation in Android easier, more powerful, and more flexible. The Android 4.0 improvements discussed below are small additions to these core facilities.

Properties

One of the constraints of the Java programming language is the lack of “properties”. There is no way to refer generically to a field or a setter/getter of an object. As long as you know what kind of object you have, this is not a problem, because you then know the set of fields and methods that you can call. But if someone passes you some subclass of Object and you'd like to get or set some value “foo” on it, you're out of luck. You can use reflection or JNI to get access to the foo field/methods, but there is no way to refer directly to a field or a method unless you know the instance type of the object that has that field/method on it.

This is a constraint that the new animation system works within. Its whole job, you might say, is to get and set values on generic objects that it's been told about. If someone wants to animate the alpha property on a View, they tell the system the target object and the name of that field (“alpha”), and the animation system uses JNI to figure out which method(s) act on a field of that name. Basically, it looks for setAlpha() and, sometimes, getAlpha() methods. Then when an animation frame occurs, it calculates the new value and passes it into the setter method that it found.

This seems like a lot of work for what it does, but there's really no way around it. Unless the animation system were specific to View objects, there's no way that it could know that the target object has appropriate setter/getter methods. And even if it did, there's still no way for callers that construct the animations to tell the animator about the property named “alpha”; there are no function handles like there are in other languages, and there's no way to reference a public field either. (I'm ignoring Reflection here, which has Method and Field objects, because this approach requires much more overhead and processing than the simple function/field references of other languages).

If only there were a way to refer to these properties and to get/set them on generic objects...

Now there is. There is a new Property object in the android.util package that does exactly this. This class offers a set() and a get() method. So if someone hands you a Property object, you can safely call the set() and get() methods without knowing anything about the target object and it will do the job. Moreover, it will do it much more efficiently than the current JNI or reflection approaches because it can, depending on the implementation of it, set a field or call a method on the target object directly. For example, the new ALPHA property on View calls setAlpha() on the View object.

The Property class is a generic utility that can be used anywhere, not just in animations. But it's animations that benefit enormously from it, in their ability to handle properties in a type-safe and efficient manner.

For example prior to Android 4.0, you might construct a fade-out animation on some object myView like this:

ObjectAnimator anim = ObjectAnimator.ofFloat(myView, "alpha", 0);

In Android 4.0, you can use the new ALPHA object on View to construct a Property-based animator instead:

ObjectAnimator anim = ObjectAnimator.ofFloat(myView, View.ALPHA, 0);

ViewPropertyAnimator Additions

There were minor API additions to the ViewPropertyAnimator class (introduced in Android 3.1) which make this class more flexible and powerful:

  • cancel(): You can now cancel() a running ViewPropertyAnimator.

  • setStartDelay(): You can now set a startDelay on the ViewPropertyAnimator, just like the startDelay of the other Animator classes.

  • start(): ViewPropertyAnimators start automatically, but they do so on the next animation frame handled. This allows them to collect several requests and bundle them together, which is much more efficient and makes it easier to synchronize multiple animations together. However, if you just want to run a single animation, or want to make sure it starts immediately, at the time of construction, you can call start() to avoid that intervening delay.

LayoutTransition

LayoutTransition (introduced in Android 3.0) continues to provide functionality that makes some kinds of animations easier, specifically when adding, removing, hiding, and showing views. For example, either this snippet in a layout file:

Or this code added at runtime:

 container.setLayoutTransition(new LayoutTransition());

will result in a container that animates the visibility of its children views. So when a view is added to the container, the other children will animate out of the way and then the new one will fade in. Similarly, removing a child from the container will fade it out and then animate the other children around to their final places and sizes.

You can customize the animations and timing behavior of a LayoutTransition object, but the code above allows a very easy way to get reasonable default animation behavior.

One of the constraints in the pre-4.0 version of the class was that it did not account for changes in the bounds of the parent hierarchy. So, for example, if a LinearLayout with horizontal orientation has a layout_width of wrap_content and you want to run a transition that removes an item from that layout, then you might notice the parent snapping to the end size and clipping its children instead of animating all of them into their new positions. The new approach (enabled by default, but disabled by a call to setAnimateParentHierarchy(false)) also animates the layout bounds and scrolling values of the parent layout and its parents, all the way up the view hierarchy. This allows LayoutTransition to account for all layout-related changes due to that view being added or removed from its transitioning container.

Conclusion

The Android 3.0 release saw huge improvements in the visual capabilities of the platform, as we started enabling hardware acceleration and providing new, more flexible animation capabilities. Android 4.0 continues this trend as we continue to work hard on improving the performance, features, and usability of the Android APIs. We’re not done yet, but the enhancements in this release should help you create more exciting Android experiences and applications.

Android Application Error Reports

[This post, the first in a series about new features in Android 2.2 ("Froyo"), is by Jacek Surazski, a Googler from our Krakow office. — Tim Bray]

The upcoming release of Android will include a new bug reporting feature for Market apps. Developers will receive crash and freeze reports from their users. The reports will be available when they log into their Android Market publisher account. No more blind debugging!

When an app freezes or stops responding, the user can send a bug report to the developer with a click of a button, right from their phone. The new button appears in the application error dialog; if the user chooses to click it, the Google Feedback client running on the device will analyze the offending app and compose a report with information needed to diagnose it. The system is set up with user privacy in mind — the app developer will not receive information which could identify the user in any way. The user can also preview all information that will be sent.

If users choose to do so, they may also send additional system information like device logs. Because there is a chance these may contain private information, they will not be passed on to the developer; they will be used by Google to track down bugs in the Android system itself.

On the receiving end, developers will get tools to diagnose, triage and fix bugs in their apps. A popular app can generate hundreds of thousands of reports. Google Feedback aggregates them into "bugs" - individual programming errors. Bugs are displayed to developers sorted by severity, measured as the rate at which reports for the bug are flowing in.

Clicking on a bug will display information such as stack traces, statistics about which type of hardware the bug occurred on and what versions of the app the user was running. In case of freezes, stack traces for all threads in the app will be displayed. This data should give developers a good idea how well their apps are faring in the wild.

Google is constantly working on improving and extending the feedback feature to provide developers with tools to improve the quality of their apps. The benefits should be felt by both developers and their users.

[I recommend watching the video of this feature's announcement in Vic Gundotra's Google I/O keynote on May 20th, mostly for the audience reaction. I hear that a high proportion of developers are making use of the Market's new "Bugs" tab. — Tim Bray]

Android 3.1 Platform, New SDK tools

As we announced at Google I/O, today we are releasing version 3.1 of the Android platform. Android 3.1 is an incremental release that builds on the tablet-optimized UI and features introduced in Android 3.0. It adds several new features for users and developers, including:

  • Open Accessory API. This new API provides a way for Android applications to integrate and interact with a wide range of accessories such as musical equipment, exercise equipment, robotics systems, and many others.
  • USB host API. On devices that support USB host mode, applications can now manage connected USB peripherals such as audio devices. input devices, communications devices, and more.
  • Input from mice, joysticks, and gamepads. Android 3.1 extends the input event system to support a variety of new input sources and motion events such as from mice, trackballs, joysticks, gamepads, and others.
  • Resizable Home screen widgets. Developers can now create Home screen widgets that are resizeable horizontally, vertically, or both.
  • Media Transfer Protocol (MTP) Applications can now receive notifications when external cameras are attached and removed, manage files and storage on those devices, and transfer files and metadata to and from them.
  • Real-time Transport Protocol (RTP) API for audio. Developers can directly manage on-demand or interactive data streaming to enable VOIP, push-to-talk, conferencing, and audio streaming.

For a complete overview of what’s new in the platform, see the Android 3.1 Platform Highlights.

To make the Open Accessory API available to a wide variety of devices, we have backported it to Android 2.3.4 as an optional library. Nexus S is the first device to offer support for this feature. For developers, the 2.3.4 version of the Open Accessory API is available in the updated Google APIs Add-On.

Alongside the new platforms, we are releasing an update to the SDK Tools (r11).

Visit the Android Developers site for more information about Android 3.1, Android 2.3.4, and the updated SDK tools. To get started developing or testing on the new platforms, you can download them into your SDK using the Android SDK Manager.

Android 2.3 Platform and Updated SDK Tools

Today we're announcing a new version of the Android platform — Android 2.3 (Gingerbread). It includes many new platform technologies and APIs to help developers create great apps. Some of the highlights include:

Enhancements for game development: To improve overall responsiveness, we’ve added a new concurrent garbage collector and optimized the platform’s overall event handling. We’ve also given developers native access to more parts of the system by exposing a broad set of native APIs. From native code, applications can now access input and sensor events, EGL/OpenGL ES, OpenSL ES, and assets, as well a new framework for managing lifecycle and windows. For precise motion processing, developers can use several new sensor types, including gyroscope.

Rich multimedia: To provide a great multimedia environment for games and other applications, we’ve added support for the new video formats VP8 and WebM, as well as support for AAC and AMR-wideband encoding. The platform also provides new audio effects such as reverb, equalization, headphone virtualization, and bass boost.

New forms of communication: The platform now includes support for front-facing camera, SIP/VOIP, and Near Field Communications (NFC), to let developers include new capabilities in their applications.

For a complete overview of what’s new in the platform, see the Android 2.3 Platform Highlights.

Alongside the new platform, we are releasing updates to the SDK Tools (r8), NDK, and ADT Plugin for Eclipse (8.0.0). New features include:

Simplified debug builds: Developers can easily generate debug packages without having to manually configure the application’s manifest, making workflow more efficient.

Integrated ProGuard support: ProGuard is now packaged with the SDK Tools. Developers can now obfuscate their code as an integrated part of a release build.

HierarchyViewer improvements: The HierarchyViewer tool includes an updated UI and is now accessible directly from the ADT Plugin.

Preview of new UI Builder: An early release of a new visual layout editor lets developers create layouts in ADT by dragging and dropping UI elements from contextual menus. It’s a work in progress and we intend to iterate quickly on it.

To get started developing or testing applications on Android 2.3, visit the Android Developers site for information about the Android 2.3 platform, the SDK Tools, the ADT Plugin and the new NDK.

Check out the video below to learn more about the new developer features in Android 2.3.