Pages

Saturday, 23 March 2013

Android SDK Updates

Today we are releasing updates to multiple components of the Android SDK:

  • Android 2.0.1, revision 1
  • Android 1.6, revision 2
  • SDK Tools, revision 4

Android 2.0.1 is a minor update to Android 2.0. This update includes several bug fixes and behavior changes, such as application resource selection based on API level and changes to the value of some Bluetooth-related constants. For more detailed information, please see the Android 2.0.1 release notes.

To differentiate its behavior from Android 2.0, the API level of Android 2.0.1 is 6. All Android 2.0 devices will be updated to 2.0.1 before the end of the year, so developers will no longer need to support Android 2.0 at that time. Of course, developers of applications affected by the behavior changes should start compiling and testing their apps immediately.

We are also providing an update to the Android 1.6 SDK component. Revision 2 includes fixes to the compatibility mode for applications that don't support multiple screen sizes, as well as SDK fixes. Please see the Android 1.6, revision 2 release notes for the full list of changes.

Finally, we are also releasing an update to the SDK Tools, now in revision 4. This is a minor update with mostly bug fixes in the SDK Manager. A new version of the Eclipse plug-in that embeds those fixes is also available. For complete details, please see the SDK Tools, revision 4 and ADT 0.9.5 release notes.

One more thing: you can now follow us on twitter @AndroidDev.

Android’s HTTP Clients

Jesse Wilson

[This post is by Jesse Wilson from the Dalvik team. —Tim Bray]


Most network-connected Android apps will use HTTP to send and receive data. Android includes two HTTP clients: HttpURLConnection and Apache HTTP Client. Both support HTTPS, streaming uploads and downloads, configurable timeouts, IPv6 and connection pooling.

Apache HTTP Client

DefaultHttpClient and its sibling AndroidHttpClient are extensible HTTP clients suitable for web browsers. They have large and flexible APIs. Their implementation is stable and they have few bugs.

But the large size of this API makes it difficult for us to improve it without breaking compatibility. The Android team is not actively working on Apache HTTP Client.

HttpURLConnection

HttpURLConnection is a general-purpose, lightweight HTTP client suitable for most applications. This class has humble beginnings, but its focused API has made it easy for us to improve steadily.

Prior to Froyo, HttpURLConnection had some frustrating bugs. In particular, calling close() on a readable InputStream could poison the connection pool. Work around this by disabling connection pooling:

private void disableConnectionReuseIfNecessary() { // HTTP connection reuse which was buggy pre-froyo if (Integer.parseInt(Build.VERSION.SDK) < Build.VERSION_CODES.FROYO) { System.setProperty("http.keepAlive", "false"); }}

In Gingerbread, we added transparent response compression. HttpURLConnection will automatically add this header to outgoing requests, and handle the corresponding response:

Accept-Encoding: gzip

Take advantage of this by configuring your Web server to compress responses for clients that can support it. If response compression is problematic, the class documentation shows how to disable it.

Since HTTP’s Content-Length header returns the compressed size, it is an error to use getContentLength() to size buffers for the uncompressed data. Instead, read bytes from the response until InputStream.read() returns -1.

We also made several improvements to HTTPS in Gingerbread. HttpsURLConnection attempts to connect with Server Name Indication (SNI) which allows multiple HTTPS hosts to share an IP address. It also enables compression and session tickets. Should the connection fail, it is automatically retried without these features. This makes HttpsURLConnection efficient when connecting to up-to-date servers, without breaking compatibility with older ones.

In Ice Cream Sandwich, we are adding a response cache. With the cache installed, HTTP requests will be satisfied in one of three ways:

  • Fully cached responses are served directly from local storage. Because no network connection needs to be made such responses are available immediately.

  • Conditionally cached responses must have their freshness validated by the webserver. The client sends a request like “Give me /foo.png if it changed since yesterday” and the server replies with either the updated content or a 304 Not Modified status. If the content is unchanged it will not be downloaded!

  • Uncached responses are served from the web. These responses will get stored in the response cache for later.

Use reflection to enable HTTP response caching on devices that support it. This sample code will turn on the response cache on Ice Cream Sandwich without affecting earlier releases:

private void enableHttpResponseCache() { try { long httpCacheSize = 10 * 1024 * 1024; // 10 MiB File httpCacheDir = new File(getCacheDir(), "http"); Class.forName("android.net.http.HttpResponseCache") .getMethod("install", File.class, long.class) .invoke(null, httpCacheDir, httpCacheSize); } catch (Exception httpResponseCacheNotAvailable) { }}

You should also configure your Web server to set cache headers on its HTTP responses.

Which client is best?

Apache HTTP client has fewer bugs on Eclair and Froyo. It is the best choice for these releases.

For Gingerbread and better, HttpURLConnection is the best choice. Its simple API and small size makes it great fit for Android. Transparent compression and response caching reduce network use, improve speed and save battery. New applications should use HttpURLConnection; it is where we will be spending our energy going forward.

Android Security Update

Recently, there’s been a lot of news coverage of malware in the mobile space. Over on our Mobile blog, Hiroshi Lockheimer, VP of Android engineering, has posted Android and Security. We think most Android developers will find it interesting reading.

Android's First 5 Months

Originally by Sung Hu Kim, Product Marketing Manager for Android, Google mobile team

As some of you may have heard, Wireless Week has chosen the Open Handset Alliance and Android for its Emerging Technology Award, noting that "Android's potential promises openness and innovation, perhaps changing not only the mobile Internet but the Internet itself."

We at Google would like to congratulate all the members of the Open Handset Alliance and the fantastic Android developer community for this well deserved recognition. Android's growing momentum is the result of an amazing effort and collaboration among many different people. Coincidentally, this week marks five months since the Open Handset Alliance and Android first went public. A lot has happened in this short period of time. Among the things of note:
  • We released an early look at the Android software development kit (SDK), allowing anyone to learn and start creating apps for the platform.
  • Feedback from developers has contributed to numerous fixes, improvements, new tools, and major updates to the SDK, the latest version of which you can find here.
  • Google announced the Android Developer Challenge, which will provide $10 million in total awards for the best Android apps—and the first phase has nearly wrapped up. (Be sure to get your submissions in by April 14!)
  • Several companies gave the first working demonstrations of Android in February.
These have been an exciting first 5 months, and we look forward to making the coming months even better.